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The active control of rotordynamic vibrations and stability by magnetic bearings and 

electromagnetic shakers has been discussed extensively in the literature. These devices, though 

effective, are usually large in volume and add significant weight to the stator. The use of 

piezoelectric pushers may provide similar degrees of effectiveness in light, compact packages. 

This paper contains analyses which extend quadratic regidator, pole placement and derivative 

feedback control methods to the “prescribed displacement” character of piezoelectric pushers. 

The structural stiffness of the pusher is also included in the theory. 

Tests are currently being conducted at NASA Lewis Research Center with piezoelectric 

pusher-based active vibration control. The paper presents results performed on the NASA test 

rig as preliminary verification of the related. theory. 
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NOMENCLATURE 

[ADm] 

PFD"1 
PVD"1 
PI : Damping matrix 

161 
C? 
ICFI : Feedback damping matrix 

c, 
[CSI 

el : Eccentricity 

Fi 

( F D ( t ) }  : External forces (disturbance) 

FP, 

[G'I : System gain matrix 

PI : Identity (unity) matrix 

IP 

IT : Moment of inertia 

minJ  

[KI : Stiffness matrix 

[KD1 
WDD1 : Pusher stiffness matrix 

lKF1 : Feedback stiffness matrix 

KP 

K ,  

M 

[MI : Mass matrix 

N 

: Coefficient matrix associated with (X} in state space 

: Coefficient matrix associated with {FD}  in state space 

: Coefficient matrix associated with {U} in state space 

: Uncoupled velocity feedback damping matrix 

: Feedback positive active damping 

: Damping coef. of the piezoelectric stack 

: Coef. matrix associated with the output vector 

: Imbalance forces due to mass imbalance 

: Force produced by the i th  pusher 

: Polar moment of inertia 

: Minimize the performance index J 

: Stiffness matrix including the pusher stiffness 

: Preload spring inside the pusher 

: Stiffness of the stack of piezoelectric discs 

: Number of piezoelectric pushers 

: Number of degrees of freedom 
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[PI 

[Ql 
r 

[RI 
t 

UJ1 : Control force matrix 

{XI : State vector 

iy1 : Output vector 

(21 : Space coordinates 

z; : Pusher tip displacement 

(4 
ci : ith modal damping 

{t} : Modal coordinates 

[OD] : Mode shape matrix 

PIT 
Pi1 : i th  natural frequency 

[diag( )] : Diagonal matrix 

: Matrix solution from Riccati equation 

: Weighting matrix associated with state vector 

: Number of observer’s output 

: Weighting matrix associated with control vector 

: Number of modes used 

: Prescribed displacement of the pushers 

: Transpose matrix of mode shape matrix 

INTRODUCTION 

An increasing amount of research is being devoted to developing effective active vibration 

control packages for rotating machinery, machine tools, large space structures, and in robotics. 

The advantages of active control over passive, i.e., absorbers and dampers, is the versatility of 

active control in adjusting to a myriad of load conditions and machinery configurations. This 

is clearly illustrated when one considers the very narrow bandwidth that a tuned spring mass 

absorber is effective in. 

Electromagnetic shakers and magnetic bearings have been used for actuators in the majority 

of the active vibration control research mentioned in the literature. Schweitzer (1985) examined 

the stability and observability of rotor bearing systems with active vibration control, and 
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presented an analysis which related force and stiffness to electrical and geometrical properties of 

electromagnetic bearings. 

Nikolajsen (1979) examined the application of magnetic dampers to a 3.2 meter simulated 

marine propulsion system. Gondholekar and Holmes (1984) suggested that electromagnetic 

bearings be employed to shift critical speeds by altering the suspension stiffness. Weise (1985) 

discussed proportional, integral, derivative (PID) control of rotor vibrations and illustrated how 

magnetic bearings could be used to balance a rotor by forcing it to spin about it’s inertial axis .  

Humphris et al. (1986) compared predicted and measured stiffness and damping coefficients for 

a magnetic journal bearing. 

Several papers describe active vibration control utilizing other types of actuators. Feng 

(1986) developed an active vibration control scheme with actuator forces resulting from varying 

bearing oil pressure. Heinzmann (1980) employed loud speaker coils linked to the shaft via ball 

bearings, to control vibrations. 

This paper develops theory and shows test results corresponding to incorporating piezoelec- 

tric pushers as actuator devices for active vibration control. The usual application for these de- 

vices is for obtaining minute position adjustments of lenses and mirrors in laser systems (Burleigh, 

1986). In the proposed application the pushers force the squirrel cage - ball bearing supports 

of a rotating shaft. The induced vibration counteracts the unbalanced vibration of the shaft by 

contributing active damping to the system. The paper presents active vibration control theory 

and test results for the piezoelectric pushers. To the authors’knowledge this represents a new ap- 

plication of piezoelectric actuators although there has been previous applications to the bending 

vibration of non-rotating beams using ‘layered piezoelectric materials (Tzou, 1987). 

THEORY 

The piezoelectric pushers:consist of a stack of piezoelectric ceramic discs which are arranged 

on top of one another and connected in parallel electrically. The stack expands in response to 

an applied voltage which causes the electric field to point in the direction of polarization for 

each disc. The extension of the pusher depends on the number and thickness of the discs and 
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the force depends on the cross sectional area of the discs. Figure 1 shows a sketch of a pusher 

and the corresponding ideal model. The model consists of a prescribed displacement (a) which 

is proportional to the input voltage and a spring ( K , )  representing the stiffness of the stack of 

piezoelectric discs. The stiffness K p  is a preload spring which is typically 0.001 to 0.01 times the 

stiffness K,. The figure shows that the device has a bilinear spring unless the tip is sufficient 1s 

preloaded to maintain a zero gap at all times. The model utilized in the upcoming analysis 

neglects nonlinearities in the electrical and structural characteristics of the devices and damping 

(C,) in the piezoelectric stack. 

If pushers are attached to m distinct degrees of freedom of the mode!, its matrix differential 

equation may be partitioned and rearranged into the form, 

[ M I ( N X N ) { % v X l )  + [ C l ( N x N )  m ( i V x 1 )  + [ K D l ( N X N ) t Z ) ( N X 1 )  = 

{FD(t ) ) (  N x  I )  - [ K D D ] ( N x  M ) { a ) ( M x  3 )  (1) 

where N and M are the number of degrees of freedom of the rotor and the number of piezoelectric 

pushers, respectively, and 

W D I ( N x N )  = i K l ( N x N )  + 

and 

. . . . . . . . . . . . . . .  

... kl ... : .  . . :  ... 

... : ... k2 ... . . . .  
. .  . . . . . . . .  . . . . .  

... : ... ... I C ,  ... 

. . . . . . . . . . . . . . .  
I . . .  . . . . . .  ...\ 

. . . . . . . . .  I ... 
kl 

kz . . . . . .  I 
[ K D D l ( N x M )  = - I::: ... 

... ::: ;-I 
. . . . . . . . . . . .  

(3) 

{a) = (:) 
a m  

(4) 
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The matrices [MI, [C], and [K] are the mass, damping,and stiffness matrices of the rotor bearing 

system without the pushers installed, as defined in (Palazzolo, 1983), The Ki are the effective 

stiffness of the pushers, which from Figure 1 are K; = (l/K.,; + 1/KPi)-l. The stiffness K; is 

inserted at the degree of freedom whose motion is the same as the tip motion of the corresponding 

pusher. The parameter a, is the prescribed internal displacement of pusher i, which is assumed 

to vary linearly with input voltage. 

The following portions of the paper provide the mathematical means for incorporating the 

piezoelectric pusher model into three standard active vibration control algorithms. 

Part I: Optimal Control 

Define the modal transformation 

where t is the number of modes used in the modal space and [OD] is the mode shape matrix for 

the system that includes the pusher stiffness. Substitute Eq.(5) into Eq.(l) and premultiply by 

[ODIT, the transpose matrix of [ Q D ] .  Furthermore, assume that the system is proportionately 

damped, and the mass matrix has been orthonormalized; 

(6) 
D T  

[@ 1 = [II(txt)  

Eq.(7) can be written as a first order (state space) form by adding an identity equation as 

I follows. 
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Multiplying Eq.(8) by the inverse of the leading coefficient matrix yields 

where 

Since it is impractical to measure the displacement and velocity at all the system degrees of 

freedom (dof), an observer system may be constructed to estimate the state vector from a smaller 

number of measurements. This approach, however, may not be feasible for a large rotordynamic 

system involving many degrees of freedom and excitation at high frequencies. Another approach 

is output feedback, i.e., limit the control measurements to only those defined in the output vector, 

{ Y ) ,  defined by 

The control for the prescribed "intejnal" displacements of the pushers is 
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where r is the number of sensors (velocities and displacements), and M the number of pushers. 

Substituting Eq.(14) in Eq.(15) and converting this equation to the modal space with Eq.(5) 

yields ( [PI ;o; .;. : !O! ) (?) 
{CY)(MXl)  = -[G‘l[Csl 

[aD] 
or in abbreviated notation 

tCYI(MX1) = - [ G l ( M x 2 t )  { X ) ( 2 t X l )  

where 

[PI : 
[ G ] ( , x , t )  = [ ~ ’ l ( M x r ) [ ~ ~ I ( r x 2 N )  ( ;o; .;. !0! ) (18) 

Pol ( 2 N x 2 t )  

The objective of output feedback control in modal space can now be identified as obtaining 

the gain matrix [G’] in Eq.(15) that suppresses the modal coordinates t; in Eq.(5). The linear 

quadratic regulator problem goes one step further and also simultaneously reduces the required 

control displacements { C Y ; } .  The performance indeft to be minimized is defined as 

where [Q] and [R] are symmetric, positive-definite weighting matrices which govern the relative 

importance of minimizing the modal coordinates (; and the prescribed pusher displacements, 

q. Diminishing [R] will result in larger pusher “internal” displacements but smaller vibrations 

(governed by the &). Optimal control theory produces the solution for Eq.(19) in the form of 

Eq.(17). The gain matrix [GI is computed from 

where [PI is obtained as the solution matrix to the algebraic (steady state) Ricatti equation 

(Palazzolo, 1988). The steady state (algebraic) Ricatti equation is 
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where the matrices [PI,  [AD“] ,  and [Q] are 2t by 2t, the matrix [BE”] is 2t by M, and the matrix 

[R] is M by M. 

If Eq.(18) is to be solved exactly for G’, the number of measured outputs r (sum of velocities 

and displacements) must equal twice the number of modes, t, used in the modal space. Define 

the matrix [p] as 
[ @ D ]  i 

[ P l ( r x 2 t )  = [ C S I ( T X 2 N )  ( io; .;. io! ) (22) 

PDI ( 2 N x 2 t )  

Assuming that r=2t and [PI is nonsingular, the gain matrix [G’] can be derived from Eq.(18) and 

Eq.(20) as 

Dm T [G’I = [Rl-V3,  I [pI[PI-’ 

The prescribed “internal” displacement of the ith pusher can now be expressed from Eq.( 15) and 

Eq.(23) as 

The force produced by the ith pusher is 

where 2: is the pusher tip displacement. Substituting Eq.( 14) and Eq.( 15) into Eq.( 1) yields 

- - 
( 2 N x 1 )  

{ F D  (t ) }( N x 1 )  + [ K  D D ]  ( N  x M) [G’]( M x r )  [ CS] (r  x 2 N )  

where 
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~ 

Thus, the closed loop equilibrium equation becomes 

This equation is very useful for conducting rotordynamic simulations with feedback control 

utilizing piezoelectric pushers. 

Part 11: Pole Placement 

Similar to optimal control, Eq.(l) can be written in first order (state space) form as 

Premultiplication by the inverse of the leading coefficient matrix yields 

This equation is written in abbreviated notation as 

{ 2 } (2N x 1 ) = [ A  Dl ( 2 N x 2 N) {x } (2 N x 1 ) + [Bf 1 (2N x N) { F D  } ( N  x 1 ) 

+ P a  I( 2N x M )  {a}( M x 1) 

where 

96 



11 

The output vector, {Y}, and the output feedback control displacement, {a}, have the same 

definitions as in Eq.( 14) and Eq.( 15), respectively. Substituting Eq.( 14) into Eq.(15) yields 

{a ) ( M  x 1 = - [ G'] ( M  x r )  [ CS] ( r  x 2 ~ )  { X  ) ( 2 ~  x 1 (33) 

Substitute Eq.(33) into Eq.(31) and rearrange 

{i} = ([AD] - [Bal[G'l[Csl)tX~ + [G'J{FD) (34) 

Consider the unforced system with 

{ F D )  = (0) & { X }  = [ !PIP (35) 

The characteristic equation for the closed loop system becomes 

~ ~ ~ ( x [ I I ( ~ N X ~ N )  - [ A ~ ] ( ~ I V X ~ N )  + [B~I(~N~M)[G'I(M~~)[csI(~~~N)) = 0 (36) 

Assume that X is not an eigenvalue of the open loop system, then Eq.(36) can be rewritten as 

det(A[lm] - [ A D ] ) ( 2 ~ x 2 ~ )  ~ ~ ~ ( [ I ] ( ~ N x z N )  + {X[IZN]  - [AD])&,2~) 

[Ba] ( 2 ~  x M )  \GI] ( M  x r )  [ CS] ( r  x 2 N )  ) = 0 

Apply the following determinant identity (Brogaq1974) 

det(V2~I + [ P P I ( ~ N X M ) [ Q Q I ( M ~ ~ N ) )  = d e t ( [ I ~ I  + [QQ](M~zN)[PPI(~N~M)) (38) 

to Eq.(37) which then implies 

D -1 d e t ( [ I ~ I +  [ G ' I ( ~ x r ) [ C ~ l ( r x 2 ~ ) { ~ [ ~ ~ ~ 1  - [A I ) ( ~ N ~ ~ N ) [ B ~ I ( ~ N ~ M ) )  = 0 

Define 

(37) 

(39) 

(40) 
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Therefore, Eq.( 39) becomes 

Eq.(42) implies that the solution will be satisfied if the column vectors of 

are linearly dependent. Following (Fahmy, 1982) and (Stanway, 1984) this condition is expressed 

by 

(PMI + [G'I[Wi)l)  { f i ) (MXl)  = W ( M x 1 )  

for some if;} E Rm. For r prescribed values of A, Eq.(44) can be expressed as 

(44) 

or in abbreviated notation, 

The output feedback gain matrix is obtained from 

Note that r poles have to be assigned to compute the matrix inverse [Wl-l. Eq.(47) provides 

the gain matrix for prescribing r eigenvalues where r is the total number of sensor measurements 

including velocities and displacements. 

Physically, the gain matrix [G'] should be a real matrix, thus for each prescribed complex 

eigenvalue A, the complex conjugate &+I should be prescribed too. In this case, set (fi+l) = {fi} 
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13 

or let both {f;} and { f i + 1 }  be real vectors. This implies that f complex eigenvalue pairs (X i ,  X i+ l )  

may be prescribed. 

The pusher internal displacements are again obtained from Eq.(24). Furthermore, the 

feedback equivalent damping and stiffness matrices are exactly those shown in Eq.(27) and 

Eq.(28). 

Part 111: Uncoupled Velocitv Feedback Damper 

This is the simplest vibration control scheme in that it only involves the internal displacement 

of the pusher and the velocity of it's tip. If the tip of the i th pusher is in constant contact with 

the Z; degree of freedom, the control law becomes 

Then 

[ K D D ] { a }  = 

 CY^ = - G i ; Z i , ,  i = 1,2, .... m 

' 0 '  

kl  a1 
0 

kmam 
0 

, o .  

' 0  

0 

0 
- - k l G ,  

b o  

i l +  ...+ i, 

Substitution of Eq.(49) into Eq.( 1) produces the closed loop equilibrium equation; 

[ M I ( N X N ) { % v X l )  + [ q N x N ) { i ) ( N x l )  + [ K D 1 ( N x N ) { Z } ( N x l )  = { F D ( t ) } ( N X l )  

where 

[e] = [C] + 

... ... ... ... 

... ... ... ... 

... ... ct ... ... 

... ... ... 

... ... ... c: ... 

... ... ... ... 
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and 

C t  = -kiGii ,  I i = 1,2 , .  . . ,m 

Eq.(52) shows how positive active damping may be added into the rotor bearing system via the 

simple control law in Eq.(48). 

EXPERIMENTAL RESULTS 

An air turbine driven rotor rig was instrumented to check the Uncoupled Velocity Feedback 

Damper theory described in the previous section. The piezoelectric actuators utilized in the 

tests were Burleigh Pusher PZL-loo’s, being driven by Burleigh PZ-l50/150M Amplifier Drivers. 

Figure 2 shows a typical voltage vs. tip displacement plot for this arrangement. The curve 

in this plot provides an approximate description of the internal displacement (a) vs. voltage 

relation, since the tip is unloaded and the preload spring in Figure 1 is very light (e 20,000 

N/M). Therefore it is assumed that the voltage sensitivity for a is S~=-57,000.0 V/M. This 

value was nearly constant for the three pushers that were tested. 

Load deflection characteristics of the pushers were obtained by securing each one in a solid 

cylinder, applying load to the protruding tip of the pusher, and measuring the tip deflections 

shown in Figure 3. Repeated tests with 3 separate pushers yielded an average stiffness of 

approximately 3 . 5 ~  lo6 N/M. 

Figure 4 shows a simple sketch of the test rig, which consists of a 2.5 cm diameter shaft, 

61.0 cm in length; a 14.0 N overhung disc, 13.0 cm in diameteqand two squirrel cage mounted 

ball bearings. The outboard bearing is externally forced by an orthogonal pair of piezoelectric 

pushers, which are in turn positioned opposite to the two eddy current displacement probes d3 

and dq. The control law in Eq.(48) applied to the test setup becomes 
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The horizontal and vertical active damping were set equal in the control arrangement of Figure 5. 

The figure outlines how an effective damping value can be computed once the probe and actuator 

sensitivities and actuator stiffness are known. The calculations for this test setup show that the 

“active” damping coefficient is estimated to vary according to 

N s e c  
M CA = (275) x G- (55) 

where G is the amplifier gain in Figure 5. The rotor was carefully balanced, and then intentionally 

unbalanced by a known amount (10.2 gm-cm), in order to compare the test results with those 

predicted by an unbalance response computer program. 

Figure 6 and Figure 7 show the test vibration amplitude vs. speed plots for the disc probes 

d l  and dz in Figure 4. The family of curves is generated by switching amplifier gains in Figure 5 

and computing the effective damping according to Eq.(55). The computer simulation results for 

either probe dl or dz, over the same range of damping values is shown in Figure 8. A comparison 

of Figures6, 7 and 8 show that although the test damping is less than the predicted value from 

Eq.(55) a considerable amount of damping (10,000. N sec/M, 57 lb sec/in) is still produced. 

Figure 9 and Figure 10 show the measured unbalanced response plots at the vertical (d3)  

and horizontal (d4) bearing probes, respectively. Figure 11 shows the theoretical response for the 

same probes. The results again indicate that Eq.(55) overpredicts the active damping, however 

by comparing the plots the pushers do provide approximately 14,000. N sec/M (80.0 lb sec/in) 

damping at the highest amplifier-gain setting. 

The above comparison was also performed including gyroscopics in the theoretical model. 

This effect only caused minor changes in the predicted response. 

SUMMARY AND CONCLUSIONS 

This paper has examined the possible use of piezoelectric pushers for active control of 

rotor-bearing system vibrations. Although their most common application is currently micro- 

positioning of laser system mirrors and lenses; their stroke, force and frequency response make 
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them potentially very useful for vibration control. The obvious advantage of piezoelectric pushers 

over other actuators is their compact size and light weight. 

Three active theories were extended to treat the special prescribed “internal” displacement 

(a) character of piezoelectric pushers. The Uncoupled Velocity-Feedback Damper theory was 

then tested by comparison to experimental results. The study showed that dthough the theory 

overpredicts the amount of damping produced by the pusher the actual level is significant, being in 

the range of 10,000-14,000. N sec/M (57.0-80.0 lb sec/in). The discrepancy between predicted and 

measured results most likely arises from the nonlinearity and hysteresis in the voltage-deflection 

and load-deflection characteristics of the pushers, and from the neglect of the structural damping 

of the piezoelectric stroke, by the theory. We are currently working with the pusher manufacturer, 

Burleigh Inc., to produce pushers that have reduced nonlinearity, hysteresis and stack damping. 

Construction of a feedback box to perform optimal control (OC) and pole placement control 

(PPC) is in progress. The device will accomodate up to 12 sensors and produce outputs to two 

actuators, which corresponds to a 2x12 dimension for the [G’] matrix in Eq.(15). Test results 

from application of OC and PPC will be forthcoming in the literature. 
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Figure 1 Sketch of piezoelectric pusher and corresponding analytical model. 

104 



-4.0.. 

AVERAGE SLOPE 
S~=-55,000. V/M 
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-5.0 1 

Figure 2 Typical pusher tip deflection vs. input voltage. 

PUSHER TIP 
DEFLECTION (mm) 

Load applied 

Load removed - - - - - 

38.1 cm 
W 

20.3 cm -- 5.1 em 

R 

*- 

0.00L I I I I I I 1 
0 90 180 270 360 450 

R P) 
Figure 3 Typical pusher tip deflection vs. pusher tip load. 
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Figure 4 Diagram test rig with piezoelectric pushers. 
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So = .3v/mil = 11,810.v/rn 

ue.1 I1  rrb. 

Uncoupled Velocity Feedback; a = C'd (4 
Active Dampinn CA = KAG' ( b )  

Actuator input voltage for a displacement, VA, is 

Fkom (a) and substituting the data shown in Figure; 

ThUS 

or 

Hence 

(3.5 x 10'Nlm) x C 11,8l0u/m 
57,00Oo/m 

CA = (3.8 x 1 0 - 4 4  

Nsec Ibsec 
m s n  

=275xc- (1.57 x C-) 

Figure 5 Outlines of system setup and the related equipment coefficients. 
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P R ESC R I  BED PUSHER DI S P LAC EM ENT 
D1 PROBE (DOF(1)) EXPERIMENT DATA 

n 0.04- 

0.05 

VARIATION OF CA1 & C A 2  
- C A I - C A 2 - 0  NS/M 
- - .  CAI  - C A 2 - 5 5 0 0  NS/M 

PRESCRIBED PUSHER DISPLACEMENT 
02 PROBE (DOF(3)) EXPERIMENT DATA 

0.05 

VARIATION OF CA1 & CA2 

0.04 
n a 

1 
a 

n 0.03 
I 
I 

W 

W 

W 

g 0.02 
0 a 
v) 
W 
Q: 

0.01 

0.00 

- C A I  -CA2=0  NS/M 
- - .  C A I  = C A 2 - 5 5 0 0  NS/M 
_ - -  C A I  - C A 2 - 1 3 7 5 0  NS/M 
3 -- C A I  = C A 2 = 2 7 5 0 0  NS/M I 

1000 2000 3000 4000 5000 

SPEED (RPM) 

Figure 7 Prescribed pusher displacement at probe dz (DOF 3) 
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PRESCRIBED PUSHER DISPLACEMENT 
D1 PROBE (DOF(1)) 

0 . 0 5  

LEGEND 

SPEED (RPM) 

Figure 8 Computer simulation results of prescribed pusher displacement, d, 
probe. 
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Figure 9 Measured unbalanced response plot a.t vertical, d 3 ,  probe. 
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Figure 10 Measured unbalanced response plot at horizontal, d.1, probe. 
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Figure I I Computer simulation (thcoreiical) predicted response at probe (13. 
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